

Optical Parametric Amplifiers for Ti:Sapphire Lasers

Tuning range 1160 – 2600 nm, extendable to 189 nm – 20 µm

Conversion efficiency of > 25%

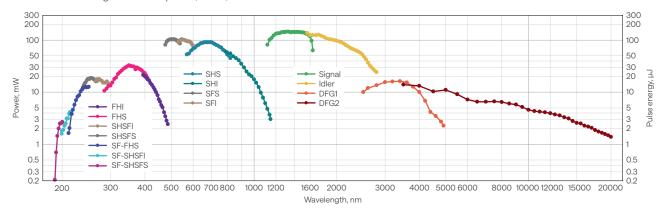
Wavelength extensions and high-energy upgrades

Nearly bandwidth- and diffraction-limited output

CEP stabilization of the idler (1600 – 2600 nm)

High output stability

Comparison table

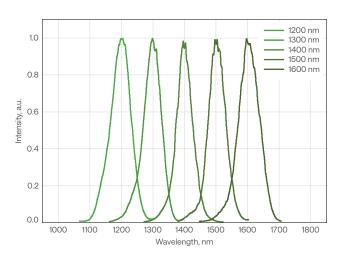

Product 1)	Pump pulse energy	Pump pulse duration	Tuning range	Extended tuning range	Output pulse duration	Upgrades	Features
TOPAS-PRIME	0.15 – 6 mJ ²⁾	20 – 200 fs	1160 – 2600 nm	189 nm – 20 μm	30 – 150 fs	HE-STAGE	Motorized wavelength control hands-free operation
TOPAS-PRIME-HE	2 – 60 mJ ²⁾					n/a	High energy, high conversion efficiency
TOPAS-TWINS 3)	0.3 – 6 mJ ²⁾					HE-STAGE	Two independently tunable CEP- stable outputs
SHBC	0.3 – 5 mJ		≈ 400 nm	240 nm −2.4 µm	1 – 5 ps	TOPAS-SHBC-400	Narrow bandwidth, picosecond output, generated from broadband femtosecond pump pulses
TOPAS-SHBC-400	0.2 – 2.5 mJ		480 – 2400 nm			n/a	
TOPAS-PS-800	0.2 – 5 mJ	1 – 2 ps	1160 – 2600 nm	240 nm – 20 μm	0.7 – 2 ps	HE-STAGE	

Custom solutions are available, contact sales@lightcon.com for more details.

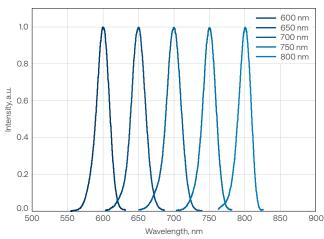
³⁾ TWINS consists of two OPAs, seeded by the same white light source. Specifications and upgrades are applicable for each output.

TOPAS-PRIME tuning curves. Pump: 1 mJ, 100 fs, 800 nm

²⁾ Maximum pump pulse energy depends on pump pulse duration.


Wavelength extensions and upgrades

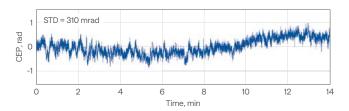
Product	Tuning range	Features		
HE-STAGE	1160 – 2600 nm	High-energy upgrade for TOPAS-PRIME, TOPAS-TWINS, or TOPAS-PS-800 for 4 – 60 mJ pump		
IIRUVIS 240 – 2600 nm		Motorized wavelength tuning, single housing		
NIRUVIS-DUV-HE 189 – 2600 nm		High-energy version, broadest tuning range, motorized wavelength tuning, single housing		
NIRUVIS-DUV	189 – 2600 nm	Broadest tuning range, motorized wavelength tuning, single housing		
NIRUVIS-MW 240 – 2600 nm		Fully automated version, the same output port for the entire wavelength range, motorized wavelength tuning, single housing		
IDFG 2600 nm – 20 μm		Noncolinear generator for background-free mid-IR pulses		
External crystal stages	240 nm – 20 μm	Cost-efficient separate crystal stages (1, 2, or 3, depending on the tuning range)		
SIG-SIG NDFG 4500 nm − 16 μm		Noncolinear generator for CEP-stable mid-IR pulses used with TOPAS-TWINS, CEP slow drift compensation-ready ¹⁾		


¹⁾ CEP slow drift is available upon request.

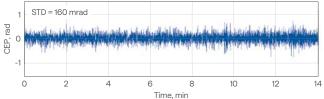
Performance

TOPAS-PRIME typical signal spectra set

TOPAS-PRIME SHS typical signal spectra set



CEP stabilization of idler


TOPAS idler (1600 – 2600 nm) is passively CEP locked due to a three-wave interaction. However, a slow CEP drift may persist because of changes in pump beam pointing or environmental conditions. Such a drift can be compensated by employing an f-2f

interferometer and a feedback loop controlling the temporal delay between the seed and pump in the power amplification stage of TOPAS-PRIME and TOPAS-PRIME-HE.

CEP stability of idler over 14 min (a) without drift compensation

(b) with drift compensation with a slow loop

