

### Spider IR 1 µm Central Wavelength

#### Towards Short Pulses at 1 µm Central Wavelength

- The Spider IR is a precision tool optimized for the complete spectral and temporal characterization of laser pulses in the infrared. Based on the patented Spider\* technology, it extends the existing range of APE Spider models to cover longer pulses, between 30 and 500 fs, at a central wavelength of around 1 µm.
- It also supports detection of the chirp sign for stretched pulses greater than 2 ps width, making it a smart choice for the alignment of pulse compressors.
- With its two internal spectrometers (for fundamental spectrum and upconverted interferogram) the Spider IR is able to simultaneously measure and analyze both spectra needed for pulse reconstruction, by using the same pulse. This gives it true single-shot capability.
- Furthermore, the Spider IR control software supports real-time calculation of the temporal amplitude and phase. The user-friendly design features highly automated software to guide the operator through calibration and alignment procedures and enable measurements to be executed with a minimum of data input.



- Best choice for pulses between 30 and 500 fs at 1 μm central wavelength
- Spectral intensity and phase plus temporal intensity and phase measurement
- Real-time and true single-shot measurement of intensity and phase
- High level of automated software support and internal camera-assisted alignment
- Full software suite included
  - \*Spectral Phase Interferometry for Direct Electric-field Reconstruction; International Patent No.: EP 1000315, WO 1999/006794



# **Spider IR** Specifications

| Specifications        |                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Wavelength Range      | 970 1070 nm *                                                                                                                                                                                                                                                                                                                                                                            |
| Typical Application   | Characterization of lasers with small bandwidths, larger pulse widths, e.g. 1 $\mu\text{m}$ laser                                                                                                                                                                                                                                                                                        |
| Spectral Bandwidth    | > 6 50 nm                                                                                                                                                                                                                                                                                                                                                                                |
| Pulse Width           | 30 500 fs; 5 ps for chirp direction measurement only                                                                                                                                                                                                                                                                                                                                     |
| Laser Repetition Rate | Any; Single Shot                                                                                                                                                                                                                                                                                                                                                                         |
| Input Polarization    | Linear horizontal                                                                                                                                                                                                                                                                                                                                                                        |
| Input Power           | $^{\sim}$ 100 mW at e.g. 80 MHz; $^{\sim}$ 20 mW at e.g. 1 kHz                                                                                                                                                                                                                                                                                                                           |
| Input Trigger         | TTL for f < 10 Hz                                                                                                                                                                                                                                                                                                                                                                        |
| Connection            | USB                                                                                                                                                                                                                                                                                                                                                                                      |
| Software              | Included; Features e.g.  Alternative interferogram demodulation analysis: Fourier / Wavelet  F-field plot  Peak power calculation  Measurement of phase differences (Dispersion measurement)  Spectral phase derivation up to fourth order  Simulation of additional theoretical dispersion (GDD, TOD, FOD)  Spectrogram (X-FROG, SHG-FROG) and Wigner trace representation of the pulse |

#### **Options**

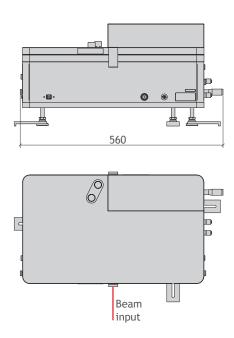
| <ul> <li>External Beam Splitter and Beam Routing Kit</li> </ul> | For lasers with low repetition rates (KHZ or less) |
|-----------------------------------------------------------------|----------------------------------------------------|
|-----------------------------------------------------------------|----------------------------------------------------|

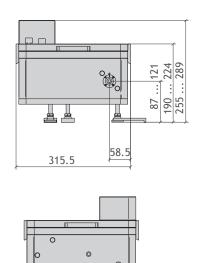
Pre-installed Notebook Available

• Wavelength Ranges Customized wavelength ranges on request

#### Dimensions

561 x 289 x 320 mm (W x H x D) (See appendix for details)


<sup>\*</sup> Other wavelength ranges on request




## **Spider IR** Technical Drawings

### Spider IR

Measurement at central wavelengths of around 1 µm





#### Similar Products

FC Spider - Measurement of very short pulses with only a few cycles Compact LX Spider - Compact version, ideal for the characterization of Ti:Sa lasers pulseCheck - Autocorrelator multitalent for any task Mini PD - Autocorrelator routine tasks with a fixed wavelength range Carpe - Autocorrelator first choice for multiphoton microscopy peakDetect - Pulse quality monitoring

Contact

APE Angewandte Physik & Elektronik GmbH

Plauener Str. 163-165 | Haus N | 13053 Berlin | Germany T: +49 30 986 011-30

F: +49 30 986 011-333 E: sales@ape-berlin.de www.ape-berlin.de



APE follows a policy of continued product improvement. Therefore, specifications are subject to change without notice.

© APE GmbH|November 2016|Rev. 3.1.1

Photonic Solutions Ltd Unit 2.2, Quantum Court, Research Avenue South, HWU Research Park, Edinburgh, EH14 4AP, UK, Tel: +44 (0)131 664 8122 Email sales@photonicsolutions.co.uk Web www.photonicsolutions.co.uk